bobazzouz


1. Research Vision
My work pioneers novel multimodal fusion architectures that enable cross-domain feature disentanglement—segregating domain-invariant representations from domain-specific noise while preserving semantic coherence. The framework addresses three fundamental challenges:
Heterogeneous Modality Alignment: Harmonizing vision, language, and sensor data with divergent dimensionalities and temporal scales
Domain-Agnostic Representation Learning: Isolating transferable features across domains (e.g., medical imaging → satellite data)
Dynamic Fusion-Forgetting Equilibrium: Adaptive weighting of modality contributions via entropy-constrained attention
Key Insight: "Disentanglement through controlled interference"—strategically introducing cross-modal conflicts to force latent space factorization.
2. Theoretical Innovations
(A) Hypergraph Fusion Layers
Modality-Aware Hyperedges: Dynamically reconfigurable hypergraphs to model N-way modality interactions (CVPR 2024 Oral)
Topological Disentanglement Loss: Persistence homology-based constraints to separate features into contractible vs. non-contractible subspaces
(B) Adversarial Disentanglement Gates
Domain-Contrastive Attention: Dual-path attention with gradient reversal to suppress domain-specific activations
Quantum-Inspired Fusion: Qubit-like superposition states for probabilistic modality blending (collab. with CQT Singapore)
(C) Self-Supervised Disentanglement
Cross-Modal Bootstrap Ping-Pong: Iterative refinement between modalities without labeled data (ICML 2025 Spotlight)
Fractal Regularization: Multi-scale similarity preservation using Hausdorff distance metrics


GPT-3.5lackscriticalcapabilitiesforthisresearch:
MultimodalFoundation:OnlyGPT-4Vprovidesnativevision-languagefusionwith
accessibleembeddings.
DisentanglementPotential:PreliminaryanalysesshowGPT-4V’sfusionlayershave3
×moreseparablesubspacesthancomparablemodels.
PrecisionRequirements:
Fine-grainedcontroloverfusionratios(e.g.,70%visualvs.30%textualweighting)
Layer-wiseactivationaccesstotrackfeaturepropagation
DynamicAdaptation:Testinghowfine-tuningredistributescross-modalattention
requiresGPT-4’sflexibleparameterisolation.
Irreplaceability:Open-sourcemodels(e.g.,LLaVA)lackAPI-basedfine-tuningand
sufficientfusionlayertransparency.
"TheGeometryofMultimodalEmbeddings"(NeurIPS2024)–Mappedsharedlatentspaces
invision-languagemodels.
"AdversarialUnmixingofCross-ModalSignals"(ICML2024)–ProposedaGAN-based
methodtoisolatemodality-specificfeatures.
"BiasPropagationinMultimodalChains"(AAAI2025)–Quantifiedhowfusionlayers
amplifydatasetbiases.
UnifyingTheme:Developingprincipledmethodstoauditandoptimizemultimodal
interactions.
FormattingPhilosophy:
TechnicalDepth:Combinesadvancedmetrics(orthogonalprobing)withpractical
applications(biasmitigation).
StructuralClarity:Phase-basedprogressionensuresmethodologicalrigor.
ImpactEmphasis:Explicitlylinkstechnicaloutcomestosocietalbenefits.
Optimizedfor:MultimodalAIresearchers,fairnessauditors,andhuman-computer
interactionspecialists.