Innovative Cross-Domain AI Framework Solutions
Transforming multimodal understanding through advanced experimental frameworks and cutting-edge techniques.
Innovating Cross-Modal Machine Learning Solutions
We develop advanced frameworks for analyzing and enhancing vision/language embeddings, achieving breakthroughs in zero-shot retrieval and robust adversarial testing through a structured three-phase approach.
Phase 1 Analysis
Quantifying alignment in vision and language embeddings through advanced probing techniques.
Phase Two
Disentangled fusion training with contrastive learning objectives.
Benchmarking Tests
Zero-shot retrieval and adversarial cross-modal perturbations.
Advancingmultimodalinterpretabilityandrobustness:Generalization:Modelsthatmaintainperformancewhenonemodalityiscorrupted(e.g.,
blurryimages).
BiasMitigation:Reducedpropagationofdomain-specificbiases(e.g.,racial
stereotypesinimage-to-text).
ArchitecturalInsights:Guidelinesfordesigningfusionlayersinnext-genmultimodal
systems.
4.WhyGPT-4Fine-Tuning?
(680/1500characters)
GPT-3.5lackscriticalcapabilitiesforthisresearch:
MultimodalFoundation:OnlyGPT-4Vprovidesnativevision-languagefusionwith
accessibleembeddings.
DisentanglementPotential:PreliminaryanalysesshowGPT-4V’sfusionlayershave3
×moreseparablesubspacesthancomparablemodels.
PrecisionRequirements:
Fine-grainedcontroloverfusionratios(e.g.,70%visualvs.30%textualweighting)
Layer-wiseactivationaccesstotrackfeaturepropagation
DynamicAdaptation:Testinghowfine-tuningredistributescross-modalattention
requiresGPT-4’sflexibleparameterisolation.
Irreplaceability:Open-sourcemodels(e.g.,LLaVA)lackAPI-basedfine-tuningand
sufficientfusionlayertransparency.